1,3-DIPOLAR CYCLOADDITION AND NUCLEOPHYLIC SUBSTITUTION REACTIONS OF C-ACETYL AND C-ETHOXYCARBONYL DERIVATIVE OF HYDRAZIDOYL BROMIDES

R. S. TEWARI and P. PARIHAR Department of Chemistry, H.B. Technological Institute, Kanpur 208002, India

(Received in UK 21 May 1980)

Abstract—1,3-Dipolar cycloaddition as well as nucleophilic substitution reactions of c-acetyl and c-ethoxycarbonyl derivatives of hydrazidoyl bromides with a variety of dipolarophiles viz., alkenes, alkynes, α,β -unsaturated ketones, aldehydes azomethines and selected nucleophiles have been investigated. The analytical and spectral data of the resulting products are consistent with the proposed structures.

The chemistry of N-(α -chlorobenzylidene) N-phenylhydrazine has been undoubtedly a major point of attraction in as far as 1,3-dipolar cycloaddition reactions are concerned.¹⁻⁴ However, the marked superiority of cacetyl and c-ethoxycarbonyl derivatives of hydrazidoyl halides⁵⁻⁷ over their aromatic counterparts may have immense synthetic utility in the preparation of heterocyclic and acyclic products. Which have been relatively little explored until recently. Early developments in the cycloaddition reaction have been mainly reported by Huisgen¹⁻³ et al. but no systematic work on the cycloaddition of c-acetyl and c-ethoxycarbonyl derivatives of hydrazidoyl halides with dipolarophiles, has so far appeared in the literature. In continuation of our previous studies^{8,9} directed towards exploring the synthetic potentialities of hydrazidoyl halides we have now prepared a series of c-acetyl and c-ethoxycarbonyl derivatives of hydrazidovl halides and investigated their 1,3dipolar cycloaddition as well as nucleophilic substitution reactions. Exploration of the studies is principally directed towards the synthesis of new heterocyclic and acyclic products.

RESULTS AND DISCUSSION

Bromination of hydrazones (1a-f), prepared by the coupling of diazonium salt solution with active methylene compounds, afforded corresponding hydrazidoyl bromide¹⁰ (2a-f) at $0-5^\circ$. Reaction usually carried out in hydrous condition using sodium acetate in the mixture of glacial acetic acid and acetic anhydride. Structural assignments for these hydrazidoyl halides are based on their elemental and spectral analyses. NMR spectra of these compounds are characterised by the presence of a N-H singlet at a very down field. IR spectra displaced a wide range of peaks characteristic of N-H, C=N, NO₂ and C=O groups in their specific range.

Dehydrobromination of these hydrazidoyl halides with triethylamine in any organic solvents, led to the formation of corresponding nitrile imines, (3a-f), as evident from appearance of intense bright colouration. Lack of stabilizing factors, and sensitivity towards atmospheric components were the major factors which precluded the isolation of these nitrile imines and therefore, these species generated in solution and undergo cycloaddition with dipolarophiles *in situ*. The enhanced reactivity of these species may also have been supported from the fact that nitrile imine, in absence of any suitable dipolarophile, dimerizes to 1,4-dihydro 1,2,4,5-tetrazine (4b,e).

 Δ^2 -Pyrazolines. The reaction of nitrile imines (3a-d) was carried out with allylamide in equimolar amounts for 2 hr, to give Δ^2 -pyrazoline (5a-d) exclusively in 78-89% yields (Scheme 2). The products having certain and unique regioselectivity, i.e. addition takes place at ethylenic double bond of allylamide. Interestingly, it was observed that reaction takes place with exceptional ease, probably due to the pronounced activating influence of the neighbouring amide function and thus required cycloadducts are obtained in appreciable yields. All the products are bright coloured, crystalline, high melting stuff. Compound 5b and 5d are not melted even at 200° but sublime at 220° and 200° respectively and thus capable of being purified by sublimation.

Similarly, the reaction of nitrile imine (3e) with maleic anhydride afforded the Δ^2 -pyrazoline (6) in approximately 40% yield. This reaction, and even reaction with allylamide is not facile because the nucleophilicity of the nitrogen of nitrile imine (3e) is so diminished by the deactivating influence of *p*-nitro group that the compound reacts sluggishly with dipolarophiles: head-to-tail dimerization of the 1,3-dipole to a dihydrotetrazine derivatives (4e) then takes place as a competing reaction (Scheme 2).

The reactivity of dipolarophiles in such addition is strongly controlled by the substituents. In general, all the substituents in the dipolarophile (relative to H) strongly accelerate 1,3-dipolar cycloadditions. α,β -Unsaturated ketones are highly reactive dipolarophiles, and thus reacted smoothly with nitrile imines (**3a-d**) afforded corresponding 1,3,4,5-tetrasubstituted Δ^2 -pyrazoline (**7a-j**) in 45-80% yields (Scheme 2).

1,3,4-Oxadiazolines. Although the dipolarophilic activity of carbonyl compounds is of little worth as evidenced by the fact that normal ketones, such as, acetophenone and benzophenone do not respond cycloaddition reaction with nitrile imines. Contrary electrondeficient CO groups of benzil or of diethylmesoxalate afforded adduct with diphenyl nitrile imine in 75 and 73% respectively. However, it was observed during course of these investigations that nitrile imine 5b and 5e on treatment with 4-hydroxy-3-ethoxy-benzaldehyde and 3-

hydroxybenzaldehyde, afforded 1,3,4-oxadiazolines 8 and 9 respectively in quantitative yields (Scheme 3).

1,2,4- Δ^2 -*Triazolines*. Both aliphatic and aromatic azomethines are liable to add on nitrile imine, their dipolarophilic character is considerably more pronounced than that of the parent carbonyl compounds. Thus, when nitrile imines (3a-d) were allowed to react with azomethine afforded corresponding Δ^2 -triazolines (10a-g) exclusively in 45-62% yields (Scheme 4).

Pyrazoles. Alkynes with C \equiv C triple bond, are well known and possess marked dipolarophilic activity and afford the aromatic pyrazole derivatives on direct reaction with nitrile imine. Furthermore, conjugation increases the activity of these dipolarophiles which, in turn enhance the yield of the products. The reaction of nitrile imine (3c) with dimethylacetylenedicarboxylate, afforded pyrazole (11) as the exclusive product in 90% yield (Scheme 5).

On the other hand, it also offers a versatile method for preparing 5-substituted pyrazoles, by the making use of mono-substituted acetylenes. Thus, when phenyl acety-

Scheme 5.

lene was reacted with nitrile imine (4b), it afforded 1-(4-bromophenyl)-3-acetyl-5-phenyl pyrazole (12) in 60% yield (Scheme 5).

The structures of all these monoadducts follows from their elemental and spectral analyses (Tables 1 and 2). Experimental results indicate that the cycloadducts (5-12) are supposed to be formed by the $3+2\rightarrow 5$ addition of dipolarophiles on to the nitrile imines intermediate (3a-f) generated *in situ* from hydrazidoyl bromide (2a-f). The orientation of the cycloaddition can be interpreted in a manner similar to that proposed for other 1,3-dipolar intermediates, which seems to be influenced more strongly by steric than by electronic factors.

Our interest is now turned to the synthesis of acyclic systems. Like their alkyl and aryl halides, hydrazidoyl bromides (2a-f) also undergo nucleophilic substitution reactions with selected nucleophiles. Although deactivating influence of the neighbouring CO group renders the Cl atom less reactive towards incoming nucleophiles, but, in some cases it is reported to have been displaced by strong nucleophilic reagents, for e.g. when hydrazidoyl bromides (2c,e,f) were treated with a calculated amount of sodium azide in aq. dioxane, hydrazidoyl azide (13,e,f) were formed in 56-60% yields. Similarly, bromides 2e and 2f were reacted with phenyl hydrazine and hydrazidine 14e and 14f were obtained in 68 and 62% yield respectively as a bright crystalline compound. The reaction of hydrazine hydrate with hydrazidoyl bromide (2c) also afforded hydrazidine (15c) in 50% yield (Scheme 6).

Reaction of hydrazidoyl bromides with heterocycles like pyridine, quinoline, and isoquinoline represent yet another example of intermolecular reaction and the substitution products so obtained may undergo cyclization affording cyclic products under different conditions. Hydrazidoyl bromide (2e) on treatment with quinoline or isoquinoline afforded their corresponding salts (16 and 17) respectively, at 40-50°. On the other hand, if the hydrazidoyl bromide (2e) was allowed to reflux with quinoline at 160-70°, complex decomposition reaction occurred yielding 2-quinolinium derivative (18) in 80% yield (Scheme 6).

EXPERIMENTAL

Uncorrected m.ps were determined on a Gallen-Kamp apparatus. The products were separated and purified by column chromatography using neutral alumina and purity checked by tlc. The IR spectra were recorded on Perkin-Elmer infracord instrument, NMR spectra (CDCl₃, CDCl₃+D₂O or DMSO) were run on a Varian A-60 and A-90 spectrometer using TMS as an internal standard. Unless otherwise stated all reactions were run under strictly anhydrous conditions.

Preparation of 1,4-dihydro-1,2,4,5-tetrazine (4b,e)

Compounds 2b,c (0.005 mol) were suspended in 95% alcohol (25.0 ml) and triethylamine (0.01 mol) in 5 ml of the same solvent was then added dropwise with constant stirring. Some time it is

slightly heated and then left overnight at room temp. The resulting brown mass was filtered, washed with water and alcohol and then dried. Finally products are purified by chromatography and recrystallized with proper solvents (Table 1).

Preparation of \Delta^2-pyrazolines

(i) Reactions with ethylenic compounds. A soln of 2a-e (0.005 mol) and olefinic dipolarophiles viz allyl amide (0.005 mol, 0.35 g) or maleic anhydride (0.005 mol, 0.49 g) in anhyd chloroform (60 ml) was allowed to reflux in an oil bath at 80°. When a clear soln was obtained, an equivalent amount of triethylamine was added. The mixture was further refluxed for 10 hr. Pyrazoline **5a** and **5d** are separated out from the chloroform simply on cooling. Whereas compounds **5b**, **5c** and **6** remain in the solution. Chloroform was removed by distillation and residue taken in dry benzene (20 ml). On cooling triethylamine-hydrobromide was precipitated out as white gelatinous mass, which was filtered off and filtrate gives Δ^2 -pyrazolines. Compounds are purified and then recrystallized with proper solvents.

(ii) Reaction with α,β -unsaturated ketones. To a soln of **2a-d** in dried benzene (60 ml) was added α,β -unsaturated ketones (0.005 mol). The soln was refluxed with a constant stirring, while triethylamine (0.005 mol) was then added dropwise, mixture was refluxed for further 10-12 hr and left overnight at room temp. Conventional work up of the mixture afforded **7a-j** in good yields (Table 1). Spectral data of the compounds are given in Table 2.

Preparation of 1,3,4-oxadiazolines (8, 9)

A soln of (0.005 mol) hydrazidoyl bromides, 0.005 mol of aromatic aldehydes and approximately ice of triethylamine in 40 ml of dry MeOH was stirred at room temp overnight under N₂ and then refluxed for 10-20 hr. The mixture was cooled and shaken slightly for some time. The precipitated chloride was filtered off and compounds crystallised from appropriate solvents.

Preparation of Δ^2 -triazolines

A soln of triethylamine (0.01 mol) in chloroform was added dropwise over a period of 30 min, to a well stirred soln of 2a-d and azomethine (0.005 mol) in 50 ml chloroform. The mixture was further heated under reflux for 30-40 hr. The solvent was then evaporated and finally taken in 15 ml benzene to precipitate triethylamine hydro bromide, which was filtered off and filtrate was distilled off under pressure. The products are purified by column chromatography and recrystallised from appropriate solvents.

Preparation of pyrazoles

Pyrazoles are prepared by the reaction of 2b,c and acetylenic compounds in equimolar amount, in presence of base. Benzene was generally used as a solvent and soln was refluxed for 16 hr and then followed the above procedure.

Preparation of hydrazidoyl azide (13,c, e, f)

11

12

91

76-78

90

60

P.E. (60-80)

EtOH

C17H18N2O6

C17H13BrN2O

58.95

(58.90)

59.82

(59.89)

5.20

(5.18)

3.81

(3.84)

8.09

(8.15)

8.21

(8.10)

A soln of 2c,e,f (0.01 mol) in 40-60% dioxane-water was slightly heated to dissolve the solid materials. To this soln was

added a soln of sodium azide dissolved in 5 ml of the same solvent. The hydrazidoyl azides are precipitated after $\frac{1}{2}$ hr on cooling at room temp. The products were filtered washed with water and dried and then thrice recrystallised from suitable solvents.

Preparation of hydrazidines (14e, f and 15c)

Compound 2ef,c was stirred as a slurry with 95% EtOH (20 ml) at room temp, while a soln of hydrazine in 3 ml alcohol was

	M.p.°		Recrystallizing solvent	Molecular formula	Elemental analysis calc (found)		
Compd. No.		Yield %			C %	Н%	N %
4b	70–71	52	Aq. MeOH	$C_{18}H_{14}Br_2N_4O_2$	45.18	2.92	11.71
					(45.20)	(2.90)	(11.78)
4e	232-33	89	EtOH	$C_{20}H_{18}N_6O_8$	51.06	3.72	17.87
					(51.12)	(3.64)	(17.92)
5a	195	78	DMF-H ₂ O	C13H14BrN3O3	45.88	4.11	12.35
			•		(45.80)	(4.21)	(12.30)
ՏՆ	220	80	DMF-MeOH	$C_{12}H_{12}BrN_{3}O_{2}$	46.45	3.87	13.54
	(Sublime)				(46.42)	(3.81)	(13.62)
5c	159	89	MeOH	C ₁₄ H ₁₇ N ₃ O ₃	61.09	6.18	15.27
					(61.12)	(6.20)	(15.22)
5d	200	78	DMF-MeOH	C ₁₃ H ₁₅ N ₃ O ₂	63.67	6.12	17.10
	(Sublime)				(63. 59)	(6.20)	(17.00)
6	212-13	40	CHCl3	$C_{14}H_{11}N_{3}O_{7}$	50.45	3.30	12.61
					(50.40)	(3.18)	(12.64)
7a	136	48	MeOH	$C_{25}H_{21}BrN_2O_3$	62.89	4.40	5.87
					(62.91)	(4.32)	(5.91)
7Ь	172	80	EtOH	C ₂₆ H ₂₂ BrClN ₂ O ₄	57.61	4.06	5.17
					(57.64)	(4.01)	(5.20)
7c	182	58	MeOH	C ₂₈ H ₂₇ BrN ₂ O ₆	59.25	4.76	4.93
					(59.18)	(4.68)	(5.01)
7 d	119	60	MeOH	C ₂₇ H ₂₃ BrN ₂ O ₆	58.80	4.17	5.08
_				_	(58.82)	(4.19)	(5.01)
7e	121	50	CHCl3-MeOH	C ₂₅ H ₁₈ BrClN ₂ O ₄	57.08	3.42	5.32
					(57.12)	(3.18)	(5.36)
7ť	72-3	45	МеОН	$C_{24}H_{19}BrN_2O_2$	64.42	4.25	6.26
_	100 00		B .011		(64.40)	(4.12)	(6.32)
7 g	129-30	54	EtOH	$C_{26}H_{21}BrN_2O_5$	59.88	4.03	5.29
-		70		0.11.11.0	(59.80)	(4.14)	(5.18)
71	112-14	70	CHCI3-ETOH	$C_{22}H_{24}N_2O_4$	69.47	6.31	7.36
	1(0.70	70			(09.42)	(0.42)	(7.42)
Л	109-/0	/0	ElOAC-EIOH	$C_{29}H_{30}N_2O_6$	69.32	5.91).)/ (5.59)
71	190	67	E+OU	СЧМО	(09.14)	(3.89)	(3.38)
4	100	02	LION	C ₂₅ Π ₂₂ N ₂ O ₂	(79.50)	5.75	(7.40)
8	242 3	50	CHCL FIOH		(70.30)	(3.71) A 10	(7.40)
0	242-3	50	chei j- Lion	C18117D11204	(53.21)	(4.21)	(6.80)
9	225-26	52	EtOH	CurllyNo0	57 14	4 20	11 76
				- 1/1-13: 306	(57.20)	(4 21)	(11.68)
10a	236-37	60	EtOAc-EtOH	C ₂₂ H ₂₀ BrN ₂ O ₂	61.33	4.44	9.33
				+23203-2	(61.40)	(4.40)	(9.39)
10b	150	45	MeOH	C27H27BrN3O2	64.80	4.40	8.40
					(64.79)	(4.32)	(8.42)
10c	220-22	52	C6H6	C ₂₆ H ₂₀ BrN ₃ O	66.38	4.25	8.93
					(66.41)	(4.28)	(8.81)
10d	122-23	62	EtOH	C ₂₄ H ₂₃ N ₃ O ₂	74.80	5.97	10.99
					(74.84)	(5.89)	(10.89)
1 9e	152-53	45	CHCl ₃ -MeOH	C ₂₄ H ₂₃ N ₃ O ₃	71.82	5.73	10.47
1.44	226 22	40		0 11 11 0	(71.80)	(5.64)	(10.49)
101	220-27	40	CHCl ₃ -EtOH	$U_{28}H_{25}N_{3}O_{2}$	77.24	5.74	9.65
18-	241 42	6 0	сч	C U N O	(77.10)	(5.81)	(9.70)
1 AR	291-92	70	C6116	C27H23N3U	00.00 (80.01)	3.0/	10.57
					100.011	(3.62)	110.41)

Table 1. Physical characteristics of the products

Compd. No.	М.р.°	Yield %	Recrystallizing solvent	Molecular formula	Elemental analysis calc (found)		
					C %	Н %	N %
13c	99–100	60	Aq. MeOH	C ₁₁ H ₁₃ N ₅ O ₂	53.84	5.26	28.34
					(53.72)	(5.32)	(28.18)
13e	133	56	EtOH	$C_{10}H_{10}N_6O_4$	43.16	3.59	30.21
					(43.20)	(3.42)	(30.10)
13f	180-82	60	Acetone-H ₂ O	C ₉ H ₈ N ₆ O ₃	43.54	3.23	33.87
					(43.59)	(3.20)	(33.79)
1 4e	185	68	EtOH	C16H17N4O4	55.97	4.95	23.32
					(55.90)	(4.89)	(23.41)
1 4 f	227	62	EtOH	C15H15N5O3	57.50	4.79	22.36
					(57.42)	(4.81)	(22.28)
15c	170	50	Acetone	$C_{11}H_{16}N_{4}O_{2}$	55.97	6.77	23.72
					(55.84)	(6.88)	(23.81)
16	170	60	EtOH	C ₁₉ H ₁₇ N ₄ O ₄	62.63	4.65	15.34
					(62.58)	(4.72)	(15.41)
17	185	70	EtOH	C ₁₉ H ₁₇ N ₄ O ₄	62.63	4.65	15.34
					(62.61)	(4.60)	(15.21)
18	190-91	80	EtOH	C ₁₆ H ₁₀ N ₄ O ₂	66.20	3.44	19.31
					(66.25)	(3.49)	(19.22)

Table 1. (Contd)

Table 2	. S	pectral	studies	of	the	products
---------	-----	---------	---------	----	-----	----------

Compd.	H-NMR Spectral	Number of	A	Compd.	IR (KBr) data	A
NO.	data (8 ppm)	protons	Assignment	NO.	(cm ')	Assignment
4e	(CDCl ₃)					
	1.20, t, J = 7.2 Hz	3H + 3H	Methyl	5b	3290, 3240	NH ₂ -Amide
	4.26, q, J = 7.2 Hz	2H+2H	Methylene		2940, 1300, 1460	CH-Aromatic
	7.27, 8.33, m	8 H	Aromatic		1680	C=O-Acetyl
					1610	C=O-Amide
5a	(DMSO-d ₆)					
	1.30, t, J = 7.0 Hz	3 H	Methyl		1590	C=N
	4.30, q, J = 7.0 Hz	2 H	Methylene		1430, 1550	C-N
	3.31, q, J = 7.0 Hz	2 H	Methylene			
	4.96, q, J = 7.0 Hz	1 H	Methine	8	3280	OH
	6.88–7.66, m	4 H	Aromatic		1620	C=0
	7.91, s	2 H	Amide		1590	C=N
					1420, 1305	C-N
5d	(DMSO-d ₆)					
					1540, 1500, 1450	C=C-Aromatic
	2.25, s	3 H	Methyl			
					3100, 880	CH-Aromatic
	2.42, s	3 H	Methyl			
					2940	CH-Aliphatic
	3.07, q, J = 7.0 Hz	2 H	Methylene			• •
	4.90, q, J = 7.0 Hz	1 H	Methine	100	1670	C=0
	7.10–7.30, m	4 H	Aromatic		1560	C=N
	7.80, s	2 H	Amide		1449, 1100	C-N
_	(07.01)				1590, 1565, 1485	C=C-Aromatic
7#	(CDCl ₃)		M		3040, 870, 830	CH-Aromatic
	1.09, t, J = 7.2 Hz	3 H	Methyl			
	4.01, q, $J = 7.2 Hz$	2 H	Methylene	10e	2990	OH
	4.31, d, J = 7.2 Hz	IH	Methine		1/00	
	5.64, d, J = 7.2 Hz	IH	Metnine		1020	C=N
	6./8 −/./8, m	14 H	Aromatic		1008, 15/0, 1510, 14/0	C=C-Aromatic
7 L	1 21 + 1 - 20 47	3 11	Methyl	166	2940, 795, 850	CH-Aromatic CH-Nenhthyl
/0	1.21, t, J = 7.0 mz	511	Mediyi	141	(broad)	Сп-нерналу
	2 92 -	2 Ц	Mathory		(01040)	C-0
	J.03, S	חנ ים	Methylene		1530	C=0 C=N
	4.11, q, J = 7.0112	11	Methine		1480 980	C_N
	570 d I = 50 Uz	1 H	Methine		1550	C=C-Arometic
	5.70, u, J = 5.0 HZ	12 11	Aromatic		1550	C-C-ruomane
70	$110 + 1 = 77 H_7$	38	Methyl	10e	2940-3040	CH-Nephthyl
				~~8	(broad)	
					()	

Compd. No.	¹ H-NMR Spectral data (δ ppm)	Number of protons	Assignment	Compd. No.	IR (KBr) data (cm ⁻¹)	Assignment
•••••	368 9	3 H	Methoxy			an
	3.74, s	3H+3H	Methoxy		1670	C=0
	407 a 1-774	20	Mathulana		1530	C=N
	4.02, q , $J = 7.2 Hz$	2 n 1 U	Meinyiene		1485, 985	C-N
	4.23, d, J - 1.2 MZ	In	Methine		1400	C=C-Aromatic
	5.54, d, J = 7.2 Hz 6.52–7.75, m	1 H 11 H	Methine Aromatic	13e	3280, 1560 2125 1150	NH N.
7h	1.05-1.33, m	3 H + 3 H	Methyl			•••
	2.15, d, J = 7.2 Hz	3 H	Methyl		1720	C=0
	3.91-4.53, m	2H+2H	Methvlene		1600	C=N
	4.70. d. J = 7.2 Hz	1 H	Methine		1500, 1330	NO2
					1480, 1100	C-N
	5.54, d, J = 7.2 Hz 6.88–7.75	1 H 9 H	Methine Aromatic	13f	3100, 1560 2120, 1240	NH Na
71	1.09, t, J = 7.2 Hz	3 H	Methyl		1(70)	
	2.12, s	3 H	Methyl		16/0	C=0
	3.64, s	3 H	Methoxy		1370	C=N
	3.71, s	3 H + 3 H	Methoxy		1500, 1330	NO ₂
	4.01, q, J = 7.2 Hz	2 H	Methylene		1360, 1150	C-N
	4.24, d, J = 7.2 Hz	1 H	Methine			
	5.55, d, J = 7.2 Hz	1 H	Methine			
71	2.25. s	3 H	Methyl			
•	2.43, s	3 H	Acetyl			
	4.43, d, $j = 5.0 \text{ Hz}$	1 H	Methine			
	5.71, 0, J = 5.0 HZ 695-790 m	141	Aromatic			
1 0a	1.20, t, J = 7.0 Hz	3 H	Methyl			
	2.16, s	3 H	Methyl			
	4.43, q, $J = 7.0 \text{ Hz}$	2 H	Methylene			
	0.83, S 6.75_7.41 m	1 H 14 H	Aromatic			
10c	1.28, t, J = 7.2 Hz	3 H	Methyl			
	2.21, s	3 H	Methyl			
	1.15, s	1 H	Hydroxyl			
	4.28, q, $J = 7.2 Hz$ 6.96–7.79, m	2 H 13 + 1 H	Aromatic			
			Methine			
11	1.28, t, J = 7.2 Hz	3 H	Methyl			
	2.30, s	3H	Methyl			
	3.81. s	3 H	Methory			
	4.27, q, J = 7.2 Hz	2 H	Methylene			
	7.14, s	4 H	Aromatic			
1 4e	1.10-1.36, m	3+1H	Methyl + Imino			
	4.20, q, J = /.0 Hz	2 H 1 H	MCINYICNC Imino			
	7.00–8.23, m	9 H	Aromatic			
14f	0.74, d, J = 7.2 Hz	1 H	Imino			
	1.14, d, J = 7.2 Hz	1 H	Imino			
	2.00, S 6.01-8.08. m	3H QH	Acetyl			
		~	• •• • • • • • • • • • • • • • • • • •			

Table 2. (Contd)

s = singlet, d = doublet, t = triplet, q = quartet.

added dropwise with vigorous stirring. The soln soon became deep red and a brown red solid precipitated. It was collected after further 8 hr stirring and recrystallized thrice with proper solvents.

Reaction of quinoline and isoquinoline with hydrazidoyl bromide On warming, 2e (1.0 g) with a mixture of quinoline or isoquinoline and alcohol (5.0 ml) for 10-20 min, the corresponding salts 16 and 17 were obtained in excellent yield. On the other hand, when the soln of 2e with quinoline was allowed to reflux in an oil bath at 160-70° for 4 hr, compound 18 was obtained as a creamy white product, which was further recrystallized from EtOH into crystalline pure material.

Acknowledgements—Authors thank Director, H.B.T.I., Kanpur, for providing facilities. One of them (PP) thanks C.S.I.R., New Delhi, for the award of J.R.F.

REFERENCES

- ¹R. Huisgen, Angew. Chem. Int. ed. 2, 565 (1963).
- ²R. Huisgen, Proc. Chem. Soc. 357 (1961).
- ³R. Huisgen, J. Org. Chem. 33, 2291 (1968).
- ⁴R. A. Firestone, *Ibid.* 33, 2285 (1968).
- ⁵L. Garanti, A. Sala and G. Zecchi, *Ibid.* 42, 1389 (1977).
- ⁶R. N. Butler and F. L. Scott, Chem. & Ind. 1216 (1970).
- ⁷D. A. Bowack and A. Lapworth, J. Chem. Soc. 1854 (1905).
- ⁸R. S. Tewari and P. Parihar, Indian J. Chem. 19B, 218 (1980).
- ⁹R. S. Tewari and P. Parihar, Z. Naturforsch. 35B, 99 (1980).
- ¹⁰D. B. Sharp and C. S. Hamilton, J. Am. Chem. Soc. 68, 588 (1946).
- ¹¹R. Huisgen, E. Aufderhaar and G. Wallbillich, *Chem. Ber.* 98, 1476 (1965).
- ¹²R. Fusco, P. D. Croce and A. Salvi, *Tetrahedron Letters* 3071 (1967).